What is New technology?

July 3, 2020
New media technology is any

Particle physics and cosmology make up the big topics of interest for many young scientists at the 66th Lindau Nobel Laureate Meeting, with lectures by the pioneering researchers who won Nobel Prizes for their work in the cosmic microwave background radiation, neutrino mass, and the accelerating expansion of the universe. These fields embody the inquisitive and fundamental nature of physics as a discipline driven purely by a curiosity about what makes the world tick.

However, let’s not forget about the importance of more applied topics in physics, such as research in semiconductors, optics, medical physics, and nanotechnology. Physicists in these fields have contributed to groundbreaking developments in technology that impact not only society as a whole, but often affect our individual lives on a day-to-day basis.

Their work often teeters on the fuzzy border between science and engineering — a place Nobel Laureate Hiroshi Amano remains very familiar with. As one of the inventors of the once-elusive blue LED, Amano had a direct hand in the realization of full-color displays that grace our beloved smartphones, as well as the energy-efficient LED lighting quickly replacing incandescent and fluorescent bulbs.

“First of all, I’d like to mention that I’m not a physicist — I belong to the engineering department. So today, I’d like to emphasize the importance of not only the science but also the engineering, ” said Amano, who kicked off the meeting’s Nobel Laureate lectures on Monday morning. “Maybe my field is not the major in this meeting, so I’d like to mention the importance of the minority.”

Amano began his lecture by describing his poor academic performance from primary school to high school. Since it seemed to him that the only reason to study hard in Japan was to get into a good high school or university, he lacked sufficient motivation. A former professor changed this mindset by describing the purpose of engineering as a discipline that connects and supports the people. From that moment on, Amano had no trouble finding the inner drive to study hard.

Despite his title as a Professor in the Department of Engineering and Computer Science at Nagoya University in Japan, Amano won the 2014 Nobel Prize in Physics along with Isamu Akasaki and Shuji Nakamura for the invention of high-brightness blue light-emitting diodes (LEDs). For three decades, the creation of a commercially viable blue LED remained a slow-going and difficult endeavor for researchers despite the previous success of red and green LEDs.

“Unfortunately, all the efforts in the 1970s failed, ” said Amano, citing issues with growing crystals in the material of choice for blue LEDs, gallium nitride, as well as creating p-type layers. “So many, many researchers abandoned this material and started the new material research such as zinc selenide. Only one person could not abandon this material: my supervisor, Isamu Akasaki.”

In 1985, Akasaki and Amano successfully created their own crystal growth system by using a buffer layer of low-temperature-deposited aluminum nitride that sat between the gallium nitride and sapphire substrate. After a few more tweaks involving the p-type layer, the two presented the world’s first high-brightness blue LED in 1992.

Traffic stats
Source: blogs.scientificamerican.com
Share this Post